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a b s t r a c t

Metabolic fingerprinting is a powerful tool for exploring systemic metabolic perturbations and potential
biomarkers, thus may shed light on the pathophysiological mechanism of diseases. In this work, a new
strategy of metabolic fingerprinting was proposed to exploit the disturbances of metabolic patterns and
biomarker candidates of childhood obesity. Plasma samples from children with normal weight, over-
weight and obesity were first profiled by GC/MS. ULDA (uncorrelated linear discriminant analysis) then
revealed that the metabolic patterns of the three groups were different. Furthermore, several metabo-
lites, say isoleucine, glyceric acid, serine, 2,3,4-trihydroxybutyric acid and phenylalanine were screened
as potential biomarkers of childhood obesity by both ULDA and CCA (canonical correlation analysis).
CCA also shows satisfactory correlation between the metabolic patterns and clinical parameters, and
as chromatography/mass spectrometry
etabolic fingerprinting
ncorrelated linear discriminant analysis

the results further suggest that WHR (waist–hip ratio) together with TG (total triglycerides), TC (total
cholesterol), HDL (high density lipoprotein) and LDL (low density lipoprotein) were the most important
parameters which are associated closely with the metabolic perturbations of childhood obesity, so as to
be paid more attention for dealing with metabolic disturbances of childhood obesity in clinical practice
rather than regularly monitored BMI (body-mass index). The results have demonstrated that the pro-
posed metabolic fingerprinting approach may be a useful tool for discovering metabolic abnormalities

for ch
and possible biomarkers

. Introduction

The prevalence of childhood obesity has risen greatly all over the
orld [1]. Considering the consequences of wide range of related

erious complications such as type 2 diabetes mellitus and cardio-
ascular diseases, childhood obesity has become a public-health
risis during the past two decades [2]. So screening, prevention and
arly treatment of childhood obesity are very important [3]. For
hese purposes, it may be of great importance for elucidating the
athophysiological process of childhood obesity. Metabolic pattern
iscrimination and biomarker screening for childhood obesity may

e effective for this issue. Since metabolic fingerprinting has proved
o be a powerful tool for exploring systemic metabolic changes
nd biomarker candidates of diseases [4], it may shed light on the
athophysiological process of childhood obesity. BMI (body-mass
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index) is routinely measured for dealing with childhood obesity [5],
and sometimes blood glucose, TG (total triglycerides), TCH (total
cholesterol), HDL (high density lipoprotein) and LDL (low density
lipoprotein) are further measured for monitoring related complica-
tions [6]. Metabolomic studies of obesity have been reported before
[7–9], however, to the best of our knowledge, metabolomics, espe-
cially metabolic fingerprinting of childhood obesity has not yet
been conducted.

For metabolic fingerprinting research, information-rich analyti-
cal technique is required. Due to high efficiency of chromatographic
separation and subsequent sensitive detection of separated compo-
nents, GC/MS has been widely applied to metabolic fingerprinting
research in conjunction with multivariate statistical analysis [10].
Multivariate statistical analyses such as PCA (principal component
analysis) [11], PLS-DA (partial least squares-discriminant analysis)
[12] and OPLS-DA (orthogonal partial least squares-discriminant

analysis) [13] were widely employed in metabolic fingerprinting
research for biomarker discovery.

In this study, a new strategy of metabolic fingerprinting by
GC/MS combined with multivariate statistical analysis was devel-
oped to explore the disturbances of metabolic patterns and possible

http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
mailto:yizeng_liang@263.net
mailto:yizengliang@gmail.com
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iomarkers of childhood obesity. Plasma samples from normal
eight, overweight and obesity children groups were first profiled

y GC/MS. ULDA (uncorrelated linear discriminant analysis), which
nds new variables with optimal discriminatory ability and small
edundancy [14], as well as CCA (canonical correlation analysis)
ere employed to explore perturbations of metabolic patterns and
otential biomarkers of childhood obesity. Furthermore, CCA was
erformed to explore the relationships between metabolic patterns
nd clinical parameters, so as to try to find some useful information
or dealing with metabolic abnormalities of childhood obesity.

. Materials and methods

.1. Chemicals and reagents

Heptadecanoic acid (98%) and BSTFA (N,O-bis(trimethylsilyl)-
rifluoroacetamide) with 1% TMCS (trimethylsilyl chloride) were
btained from Sigma–Aldrich (St. Louis, MO, USA). Chloroform, n-
exane and acetonitrile were of analytical grade and purchased

rom the Hanbang Chemical Corporation (Zhenjiang, China).

.2. Sample collection

Childhood obesity was staged according to the standards pro-
osed by the Group of China Obesity Task Force [15]. Children with a
MI from 85th to 95th percentile for age and sex were diagnosed as
verweight, while the ones with a BMI above 95th percentile were
iagnosed as obesity. The puberty age is 12–16 years old for boys
nd 10–14 years old for girls in China. In this study, all the children
ere checked to be with no spermatorrhea for boys and no menses

or girls, so as to confirm that all of them are clearly pre-puberty.
lood plasma samples were collected from 65 children in Xiangya
ospital of Central South University in Changsha, China. They were
ll from 6 to 12 years old, and 18 of them were diagnosed as nor-
al weight, 13 as overweight and 34 as obesity. Aliquots of plasma
ere stored at −80 ◦C until required for GC/MS analysis. All clin-

cal experiments were approved by Xiangya Institutional Human
ubjects Committee.

.3. Sample preparation

Plasma samples were prepared according to our former work
16,17]. The plasma sample (100 �L) was first added with 20 �L
eptadecanoic acid solution (1 mg mL−1 in chloroform) as internal
tandard and acetonitrile (500 �L) to precipitate the proteins. Then
he mixture was vigorously vortexed for 1 min and centrifuged
or 15 min at 16 000 rpm (17 800 × g) at 4 ◦C, and the supernatant
500 �L) was evaporated to dryness in a vacuum chamber. After
dding 50 �L n-hexane as solvent, the sample was derivatized using
0 �L N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1%
rimethylsilyl chloride (TMCS) at 70 ◦C for 30 min.

.4. GC/MS analysis

All analyses were performed on a Shimadzu GCMS-QP2010 gas
hromatography quadrupole mass spectrometer (Shimadzu, Kyoto,
apan). 1 �L of the derivatized sample was injected at a split ratio of
:10 into a DB-1 column (30 m × 250 �m × 0.25 �m) with helium
s the carrier gas at a flow of 1.0 mL min−1. The temperature of the
on source and injector were set to 200 and 280 ◦C, respectively. The

olumn temperature was initially maintained at 100 ◦C for 3 min,
nd increased at a rate of 8 ◦C min−1 to 300 ◦C and held for 2 min.
lectron impact energy was operated at 70 eV. The data acquisition
as performed in the full scan mode from m/z 35 to 800 with a

can time of 0.2 s. The detector voltage was set at 0.9 kV, and sol-
Biomedical Analysis 52 (2010) 265–272

vent cut time and data acquisition start time were 3.5 and 4.0 min,
respectively.

2.5. Data preprocessing

All the collected data were used for the analysis. The automated
mass spectral deconvolution and identification system (AMDIS,
National Institute of Standards and Technology, Gaithersburg, MD)
was first employed to support peak finding and deconvolution.
Tentative identification of structures of the interesting peaks was
supported by similarity search in NIST/EPA/NIH Mass Spectra
Library (NIST 05) containing 190 825 EI spectra for 163 198 com-
pounds using NIST Mass Spectral Search Program Version 2.0d and
the characteristic ions according to the literatures [18,19]. Among
the detected peaks of all the 65 chromatograms, 30 peaks were con-
sidered as endogenous metabolites excluded glucose and the peak
areas were then extracted by our custom scripts to generate a data
matrix. The rows and columns of the matrix represent the observa-
tions (samples) and variables (normalized peak areas), respectively.
As for normalization in this paper, the variables of corresponding
metabolites were expressed as the ratio of its peak area to that
of the internal standard on the same chromatogram. To check the
clinical significance of our measurements, 100 times of the values
of the variables were employed for univariate t-test. The resulting
data matrix was imported into our custom scripts in MATLAB 7.0
(The MathWorks, Inc., USA) for subsequent multivariate statistical
analyses.

2.6. Multivariate statistical analyses

For metabolic fingerprinting, PCA was usually employed for
visualizing the trends of samples. Furthermore, the supervised
method PLS-DA was regularly utilized to explore differences
between two groups of samples. However, these two methods
sometimes may not obtain satisfactory results for certain dataset.
Thus, in this study, a new method, say ULDA, was introduced
to explore the metabolic disturbances and potential biomarkers
of childhood obesity. This method finds the optimal linear com-
bination of original variables under the so-called S-orthogonal
constraint. The original data matrix X in high-dimension space was
projected into the low-dimension space as Z by transformation
matrix G, that is Z = XG.

The new variables, say UDVs (uncorrelated discriminant vec-
tors), are mutually orthogonal with each other [20,21].

CCA [22] was performed to exploit the relationships between
metabolic patterns and clinical parameters, furthermore, to assist
clinical practice for handling with metabolic abnormalities for
childhood obesity. Consider X and Y as the matrices of metabolic
patterns and clinical parameters, the corresponding rows and the
columns of X and Y represent observations and variables, respec-
tively. The two matrices were first preprocessed by autoscaling,
which can make the standard deviation to be unit and the mean to
be zero.

C =
[

Cxx Cxy
Cyx Cyy

]
= E

[(
x
y

)(
x
y

)T
]

is a block matrix where Cxx and Cyy are the within-sets covariance
matrices of X and Y, respectively. Cxy = CT

yx is the between-sets

covariance matrix. The canonical correlations between X and Y can
be found by solving the eigenvalue equations{

C−1
xx CxyC−1

yy Cyxâx = �2âx

C−1
yy CyxC−1

xx Cxyb̂y = �2b̂y



M. Zeng et al. / Journal of Pharmaceutical and Biomedical Analysis 52 (2010) 265–272 267

Table 1
Demographic and blood biochemical parameters of children with normal weight,
overweight and obesity.

Parameter Normal weight Overweight Obesity

Number (n) 16 13 32
Age (years) 8.7 ± 1.74 10.0 ± 1.15 8.9 ± 2.14
Height (cm) 132.5 ± 11.32 144.2 ± 12.64 140.7 ± 12.40
Weight (kg) 29.6 ± 7.15 47.6 ± 12.31a 49.8 ± 13.68
BMI (kg m−2) 16.6 ± 1.46 22.4 ± 2.65a 24.6 ± 3.44b

SBP (mmHg) 91.5 ± 10.05 105.3 ± 12.13a 106.6 ± 11.07
DBP (mmHg) 59.6 ± 5.06 67.2 ± 8.16a 69.1 ± 7.56
Waist (cm) 56.8 ± 5.98 76.8 ± 10.19a 78.8 ± 10.41
Hip (cm) 72.3 ± 6.63 85.2 ± 8.36a 87.8 ± 9.65
Waist–hip ratio 0.8 ± 0.05 0.9 ± 0.05a 0.9 ± 0.05
FBS (mmol L−1) 4.8 ± 0.21 4.8 ± 0.44 5.0 ± 0.35
TG (mmol L−1) 0.6 ± 0.21 1.2 ± 0.57a 1.1 ± 0.72
TC (mmol L−1) 3.7 ± 0.58 3.7 ± 0.66 3.9 ± 0.66
HDL (mmol L−1) 1.6 ± 0.35 1.3 ± 0.32a 1.3 ± 0.29
LDL (mmol L−1) 1.8 ± 0.47 1.9 ± 0.43 2.1 ± 0.51
HDL/CHO 0.4 ± 0.08 0.3 ± 0.09a 0.3 ± 0.08

a Significant coefficient at 0.05 significance level of children with normal weight
compared with overweight.
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Fig. 1. Typical GC/MS total ion chromatograms (TICs) of trimethylsilylated plasma
b Significant coefficient at 0.05 significance level of children with overweight
ompared with obesity.

here the eigenvalues �2 are the squared canonical correlations
nd the eigenvectors âx and b̂y are the normalized canonical cor-
elation basis vectors. The number of non-zero solutions to these
quations are limited to the smallest dimensionality of X and Y. The
o-called canonical variables U and V can be represented as U = Xa
nd V = Yb.

Before multivariate statistical analysis, data pretreatment was
egularly used. In this study, centering was employed for PCA and
LDA, while autoscaling was utilized to preprocess the data before
LS-DA. Centering converts all the concentrations to fluctuations
round zero instead of around the mean of the metabolite concen-
rations. Autoscaling standardizes each variable to have zero mean
nd unit variance [23].

. Results and discussion

.1. Comparison of demographic and blood chemical parameters

A child could be regarded as overweight with a BMI in the
5th–95th percentile, or as obesity with a BMI above 95th per-
entile for age and sex [12]. Table 1 shows the demographic
nd blood chemical parameters of children with normal weight,
verweight and obesity. As shown in the table, several param-
ters such as weight, BMI, SBP (systolic blood pressure), DBP
diastolic blood pressure), waist, hip, WHR (waist–hip ratio), TG,
DL/CHO (high density lipoprotein/total cholesterol) were signifi-
antly higher in overweight group than in normal group, in contrast,
DL level was significantly lower in overweight group (P < 0.05).
owever, only the level of BMI was significantly increased in
besity group compared to overweight group (P < 0.05). Although
hese parameters may reflect the metabolic state of childhood obe-
ity to some extent, there are various other underlying metabolic
isturbances associated with childhood obesity [24]. Moreover,
hese metabolic perturbations may relate to serious metabolic
utcomes such as type 2 diabetes mellitus [20] and cardiovascu-

ar diseases [25], and various metabolic abnormalities may exist
uring the progress of childhood obesity. Thus, metabolic finger-
rinting may provide a useful tool for elucidating the disturbances
f metabolic patterns and potential biomarkers, furthermore,
hed light on the pathophysiological progress of childhood obe-
ity.
samples from children with normal weight, overweight and obesity. Labeled peaks
are corresponding metabolites which were considered as potential biomarkers of
childhood obesity, and the numbers coincide with the ones in Table 2.

3.2. GC/MS metabolic fingerprinting

In this study, GC/MS was employed to profile plasma samples
of children with normal weight, overweight and obesity. Fig. 1
shows the typical total ion chromatograms (TICs) of plasma sam-
ples from children with normal weight, overweight and obesity.
After deconvolution, various kinds of metabolites, including carbo-
hydrates, organic acids, amino acids, fatty acids, amine, phosphate
and lipids were found in the three groups. Excluded carbohy-
drates, 30 compounds were considered as endogenous metabolites
according to the metabolomics database (www.hmdb.ca), and the
keys and measurements of these compounds were listed in Table 2.

Lactate plays important roles in some biochemical processes and
could be produced in the muscles during intense activity. Moreover,
lactate measurement in the critically ill has been traditionally used
to stratify patients with poor outcome [26]. 2-Ketoisocaproic acid
is a deamination product of leucine [27]. �-Hydroxybutyric acid
is an organic acid that is involved in propanoate metabolism, and
it is produced in hepatic that catabolize l-threonine or synthesize
glutathione [28]. �-Hydroxybutyric acid is a ketone body and the
levels in blood and urine are raised in ketosis like the other ketone
bodies such as acetoacetate and acetone [29]. Urea is the principal
end product of protein catabolism and formed in a cyclic pathway
known as the urea cycle [30]. Phosphate is an essential compo-
nent of life especially ATP [31]. Glycerol is an important component
of triglycerides and phospholipids, and it can also be converted
to glucose in the liver and provides energy [32]. Glycerophos-
phoric acid is a chemical intermediate in the glycolysis metabolic
pathway and can be produced from glycerol, which is the triose
sugar backbone of triglycerides and glycerophospholipids [33].
Glyceric acid can be obtained from oxidation of glycerol, several
phosphate derivatives of glyceric acid, including 2-phosphoglyceric
acid, 3-phosphoglyceric acid, 2,3-bisphosphoglyceric acid and 1, 3-
bisphosphoglyceric acid are important biochemical intermediates
of lipid metabolism [34]. 2,3,4-Trihydroxybutyric acid is probably
derived from glycated proteins or from degradation of ascorbic acid

[35]. Alanine is one of the most important amino acids released
by muscle, functioning as a major energy source [36]. Leucine
and isoleucine are branched chain amino acids, which are criti-
cal to human life and are particularly involved in stress, energy

http://www.hmdb.ca/
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Table 2
Metabolites tentatively identified in plasma samples from healthy control, overweight and obesity groups.

ID tR
a (min) Metabolites m/zb MWc Normalf Overweightg Obesityh

1 4.33 Lactate 73, 117, 147 234 130 ± 79.2 134 ± 52.6 153 ± 69.1
2 4.91 2-Ketoisocaproic acid 73, 57, 145 202 3.06 ± 1.30 2.63 ± 0.949 3.15 ± 0.911
3 5.03 Alanine 73, 116 233 0.935 ± 0.706 0.834 ± 0.596 1.11 ± 0.715
4 5.42 �-Hydroxybutyric acid 73, 131, 147 248 3.80 ± 1.89 4.00 ± 1.92 4.48 ± 1.96
5 5.96 �-Hydroxybutyric acid 73, 117, 147 248 5.08 ± 4.63 3.16 ± 2.47 3.90 ± 3.87
6 6.55d, 7.04e Urea 73d,e, 147d,e, 261d, 189e 276d,204e 346 ± 119 316 ± 73.8 312 ± 99.5
7 7.92 Phosphate 73, 299 314 4.33 ± 1.53 4.32 ± 0.858 4.40 ± 1.47
8 8.03 Leucine 73, 158 275 1.87 ± 1.13 1.38 ± 0.689 1.78 ± 1.03
9 8.20 Glycerol 73, 103, 147, 205 308 14.5 ± 7.48 12.8 ± 6.27 14.9 ± 7.74

10 8.38 Proline 73, 142 259 2.79 ± 1.83 2.94 ± 1.24 3.16 ± 1.31
11 8.43 Isoleucine 73, 158 275 0.607 ± 0.409 0.496 ± 0.266 0.663 ± 0.457
12 9.07 Glyceric acid 73, 147, 189, 292 322 0.461 ± 0.288 0.780 ± 0.473* 0.551 ± 0.314
13 9.61 Serine 73, 204, 218 321 0.332 ± 0.152 0.234 ± 0.133 0.293 ± 0.155
14 10.11 Threonine 73, 117, 219, 291 335 0.343 ± 0.279 0.309 ± 0.260 0.341 ± 0.224
15 11.77 Pyroglutamic acid 73, 147, 156, 258 273 1.22 ± 0.856 1.34 ± 1.01 1.51 ± 0.751
16 12.74 2,3,4-Trihydroxybutyric acid 73, 147, 292 424 0.279 ± 0.137 0.308 ± 0.194 0.299 ± 0.174
17 13.56 Phenylalanine 73, 192, 218 309 0.932 ± 0.673 0.637 ± 0.455 0.789 ± 0.507
18 13.87 Lauric acid 73, 117, 257 272 0.606 ± 0.393 0.580 ± 0.468 1.28 ± 3.37
19 14.27 Dodecyl acrylate 55, 83, 127 282 5.09 ± 2.75 3.74 ± 1.84 4.41 ± 2.15
20 15.68 Glycerophosphoric acid 73, 299, 357 460 0.971 ± 1.26 1.70 ± 1.49 1.28 ± 1.23
21 16.53 Myristic acid 73, 117, 285 300 1.08 ± 0.559 0.958 ± 0.411 1.12 ± 1.23
22 17.84 Tyrosine 73, 218, 280 397 0.460 ± 0.312 0.487 ± 0.335 0.519 ± 0.351
23 18.96 Palmitic acid 73, 117, 313 328 35.0 ± 9.04 37.9 ± 8.93 38.1 ± 16.0
24 20.76 Linoleic acid 73, 262, 337 352 18.9 ± 5.11 20.1 ± 7.69 20.4 ± 6.44
25 20.85 Oleic acid 73, 264, 339 354 26.7 ± 12.5 27.4 ± 13.6 29.3 ± 14.6
26 21.17 Stearic acid 73, 117, 341 356 11.3 ± 2.84 11.8 ± 2.51 12.0 ± 4.58
27 22.39 Arachidonic acid 73, 117, 175 376 1.95 ± 0.751 1.82 ± 0.647 1.98 ± 0.963
28 24.74 Monopalmitin 73, 147, 239, 371 474 1.45 ± 0.887 1.80 ± 1.02 1.91 ± 1.08
29 26.49 Monostearin 73, 147, 267, 399 502 1.11 ± 0.654 1.33 ± 0.829 1.36 ± 0.936
30 29.85 Cholesterol 73, 129, 329, 368, 458 458 26.0 ± 8.28 25.7 ± 9.93 28.7 ± 14.7

* Significant changes of levels of the corresponding metabolites from overweight children group compared to normal weight children group by the t-test (P < 0.05).
a Retention time.
b Masses shown are those of the ions selected for tentatively identification of individual derivatised metabolites.
c Molecular weight of the derivatised metabolites.
d The peak was tentatively identified as tri-TMS derivative of urea.
e The peak was tentatively identified as bis-TMS derivative of urea.
f One hundred times of the ratio of peak area to the internal standard on the same chromatogram from normal weight children group, the data were represented as mean ± SD.
g One hundred times of the ratio of peak area to the internal standard on the same chromatogram from overweight children group, the data were represented as mean ± SD.
h One hundred times of the ratio of peak area to the internal standard on the same chromatogram from obesity children group, the data were represented as mean ± SD.
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that normal and obesity groups were clearly separated in the direc-
tion of UDV1, however, the samples from overweight group were
not just in the middle. The samples of 7, 8 and 13 of the overweight
group scattered to the left part of the obesity samples. For further
M. Zeng et al. / Journal of Pharmaceutica

nd muscle metabolism [37]. Proline is synthesized from glutamic
cid. It is an essential component of collagen and is important for
roper functioning of joints and tendons [38]. Serine is important

n metabolism because it participates in the biosynthesis of purines
nd pyrimidines [39]. Threonine could be converted to pyruvate via
hreonine dehydrogenase, and an intermediate in this pathway can
ndergo thiolysis with CoA to produce acetyl-CoA and glycine [40].
yroglutamic acid is a cyclized derivative of glutamic acid, and it is
n uncommon amino acid derivative in which the free amino group
f glutamic acid cyclizes to form a lactam [41]. Phenylalanine is an
ssential amino acid and the precursor for the amino acid tyrosine
nd catecholamines in the body [42,43]. Tyrosine is an essential
mino acid that readily passes the blood–brain barrier. Once in
he brain, it is a precursor for the neurotransmitters dopamine,
orepinephrine and epinephrine, better known as adrenalin [44].
odecyl acrylate is usually used as separation media, and it may
eed further investigation [45]. Several free fatty acids, including

auric acid, myristic acid, palmitic acid, linoleic acid, oleic acid,
tearic acid, arachidonic acid are all important intermediates of
ipid metabolism [46]. The two monoglycerides, say monopalmitin
nd monostearin, could be formed biochemically via release of a
atty acid from diacylglycerol [47]. Cholesterol is a lipidic and waxy
teroid found in the cell membranes and transported in the blood
lasma [48].

As visualized in Fig. 1, the peak (12) of glyceric acid was signifi-
antly higher in overweight than in normal weight children, which
oincides with the measurement results in Table 2. Obviously, peak
17) of phenylalanine was significantly lower in overweight than in
ormal weight children as shown in Fig. 1, but it is not significant by
he univariate t-test as shown in Table 2. However, the results were
ot controversial. The standard deviations were large although the
ean values of phenylalanine from the two groups were signifi-

antly different. Since the metabolic profiles of the three groups
ere similar, multivariate statistical analyses were subsequently

mployed to explore the disturbances of metabolic patterns and
iomarker candidates of childhood obesity.

.3. Metabolic disturbances of childhood obesity

As shown in Section 2.5, the metabolic pattern of each sample
as represented by a 30-dimensional vector, in which each ele-
ent corresponding to the metabolite as shown in Table 2. First of

ll, PCA was employed to examine the clustering of samples for the
ifferences of metabolic patterns of the three groups. In the score
lot, four samples were found to be far away from the clustering
nd the distributions of the remaining samples were almost the
ame before and after deletion of these four samples (data were
ot shown). So these four samples were considered as outliers and
emoved in all of the subsequent analyses. Fig. 2 shows the score
lot (PC1 versus PC2) of the three groups without outliers by PCA,
s shown in the figure, although the first two PCs can explain up to
1% of the total variance of the data, the samples from these three
roups scattered into each other. It indicates that the unsupervised
ethod of PCA cannot separate the three groups satisfactorily. So

he supervised method PLS-DA was performed to examine whether
he patterns of these three groups were different. The samples from
ormal and obesity groups were first utilized to generate a PLS-DA
odel, and then the samples from the overweight group were pro-

ected into the model. A 10-fold cross validated PLS-DA model was
rst generated, however, the minimum error rate for prediction is
0% and Q2 for prediction is −0.78. The results showed that PLS-

A may be not suitable for exploring the differences of normal,
verweight and obesity children at least in this study.

Thus ULDA was subsequently employed to explore the distur-
ances of metabolic patterns from normal to overweight and then
besity. In fact, the procedure of ULDA is a process of reducing
Fig. 2. PCA score plot (PC1 versus PC2) of plasma samples from normal (©), over-
weight (�) and obesity (�) groups.

dimensionality of the original data. Plot of the UDV1 (first uncorre-
lated discriminant vector) versus the UDV2 (second uncorrelated
discriminant vector) was shown in Fig. 3. As illustrated in the figure,
the samples from the obesity group lie in the top, while the samples
from normal and overweight group locate in the left bottom and
right bottom, respectively. The results indicate that the proposed
metabolic patterns of plasma samples from normal to overweight
and then to obesity group were different. However, the samples
from overweight group were not in the middle of the samples from
normal and obesity groups. This result suggests that the metabolic
pattern of overweight may not simply be the middle status between
normal and obesity as BMI.

For further understanding the metabolic status of the three
groups, metabolic patterns of samples from overweight group were
projected to the plan determined by ULDA of samples from normal
and obesity groups as shown in Fig. 4. From the figure we can see
Fig. 3. Score plot of ULDA by the first uncorrelated discriminant vector (UDV1) ver-
sus the second uncorrelated discriminant vector (UDV2) of samples from normal
(©), overweight (�) and obesity (�) groups.
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ig. 4. Projection of the metabolic patterns of samples from overweight group (·) to
he plan determined by ULDA of samples from normal (©) and obesity (�) groups.

xamination of these samples, clinical parameters of samples from
verweight group were projected to the plane determined by ULDA
f samples from normal and obesity groups as shown in Fig. 5. In
he figure, the samples of 7, 8 and 13 were also located in the right,
hich is the direction of obesity, although not in the very right. The

esults of clinical parameters in Fig. 5 coincide with the results of
etabolic patterns in Fig. 4.

.4. Canonical correlation analysis of metabolic patterns and
linical parameters

In clinical practice, not only BMI was regularly measured. How-
ver, childhood obesity was diagnosed only by BMI, and the
etabolic disturbances of the overweight group were not just the
iddle status as the BMI as discussed above. So the correlation of
etabolic patterns and clinical parameters may be important. For

his purpose, CCA was conducted. Fig. 6 shows the plot of the first

anonical variables of both the metabolites (U1) and clinical param-
ters (V1). Since only the first canonical correlation coefficient was
ignificant (P = 0.008) by Bartlett’s approximate chi-squared statis-
ic, it was used in the subsequent analysis. As shown in the figure,

ig. 5. Projection of the clinical parameters of samples from overweight group (·) to
he plan determined by ULDA of samples from normal (©) and obesity (�) groups.
Fig. 6. Plot of the first canonical variables for both the metabolites (U1) and clinical
parameters (V1).

the linearity was satisfactory with the canonical correlation coef-
ficient as 0.98. The results indicate that the proposed metabolic
patterns were closely correlated with the clinical parameters.

Since the metabolic patterns can represent the underlying
metabolic disturbances of childhood obesity, and the metabolic
patterns were closely correlated with the clinical parameters, we
intended to exploit the important clinical parameters for the corre-
lation, so as to be considered for monitoring metabolic disturbances
of childhood obesity in clinical practice. For this purpose, the coef-
ficients of the first canonical variable for the clinical parameters
may be employed for representing the importance of the parame-
ters. The plot of absolute values of each variable in the first canonical
variable for clinical parameters was shown in Fig. 7, as shown in the
figure, the absolute value of WHR together with TG, TC, HDL and
LDL were significantly higher than the BMI. It indicates that these
parameters may be more correlated with metabolic disturbances
of childhood obesity, and more attention should be paid to these
parameters in clinical practice.
As for metabolic patterns, the absolute values of each variable
in the first canonical variable for metabolic profiles may represent
the importance of the metabolites which closely associated with
the clinical parameters. Thus, these metabolites may be considered

Fig. 7. Plot of the absolute coefficients of canonical variables for clinical parameters.
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ig. 8. Score plot of ULDA by UDV1 versus UDV2 of samples from normal (©) and
besity (�) groups. The samples from the two groups were distinguishable in the
irection of UDV1.

s biomarker candidates of childhood obesity. In the other hand,
he absolute values of the transformation matrix G can also repre-
ent the importance of the metabolites. So the potential biomarkers
creened by the two approaches were compared. ULDA was per-
ormed for samples from normal and obesity groups. As shown in
ig. 8, the samples of the two groups were separated clearly. So
he absolute values of the transformation matrix G may represent
he contributions of metabolites to the separation. The correspond-
ng absolute values were illustrated in Fig. 9(a). For CCA, Fig. 9(b)
hows the absolute values of the coefficients of the first canonical
ariable of metabolic patterns. As shown in the figure, the impor-
ance of metabolites screened by the two approaches were similar,
specially the variables from 11 to 20, and the status of variables of
1, 12, 13, 16, 17 in both Fig. 9(a) and (b) were alike, although not

dentical. So the corresponding metabolites, say isoleucine, glyceric
cid, serine, 2,3,4-trihydroxybutyric acid and phenylalanine may be
onsidered as potential biomarkers of childhood obesity.
Metabolic interpretation of the results is very important,
lthough the interpretation of metabolomic research is diffi-
ult for the complexity of metabolic pathways. Isoleucine, one
f the branched chain amino acids, is particularly involved in

ig. 9. Plot of the absolute values of transformation matrix G (a) and absolute coef-
cients of canonical variables for metabolites (b).
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stress, energy and muscle metabolism. It plays important roles
in increased muscle glucose uptake and whole body glucose
oxidation and decreased hepatic gluconeogenesis [49]. Glyceric
acid can be obtained from oxidation of glycerol, several phos-
phate derivatives of glyceric acid, including 2-phosphoglyceric
acid, 3-phosphoglyceric acid, 2,3-bisphosphoglyceric acid and 1,3-
bisphosphoglyceric acid are important biochemical intermediates
of lipid metabolism, which has been reported to be correlated with
obesity [50]. Serine is important in metabolism that it participates
in the biosynthesis of purines, whose catabolism has been found
to be associated with obesity [51]. 2,3,4-Trihydroxybutyric acid
may probably derived from glycated proteins, which are usually
found in diseases such as obesity [52]. Phenylalanine, an essential
amino acid and the precursor for tyrosine and the neurotransmit-
ters called catecholamines in the body, has been discovered to be
closely related to obesity [53].

There are metabolomic studies about obesity, and the results
coincide well with the results in this work, although they are
all about obesity but not childhood obesity. A branched chain
amino acid (BCAA)-related metabolite signature that is suggestive
of increased catabolism of BCAA and correlated with insulin resis-
tance was revealed by metabolomics profiling of obese versus lean
humans [7]. In this work, one of the branched chain amino acids,
say isoleucine, was suggested to be important and considered as
potential biomarker of childhood obesity. Obesity has also been
found to be related to the changes in lipidomic profile, particu-
larly increases in lysophosphatidylcholines and decreases in ether
phospholipids [8], which quite agree with our results. In this study,
glyceric acid was screened and considered as biomarker candidate
of childhood obesity, and its phosphate derivatives are all involved
in lipid metabolism.

4. Conclusions

In this study, a metabolic fingerprinting approach by GC/MS
combined with ULDA and CCA was used to explore disturbances
of metabolic patterns and potential biomarkers of childhood obe-
sity. The results indicate that the proposed metabolic patterns can
reflect the metabolic states of the progress for childhood obe-
sity, moreover, isoleucine, serine, 2,3,4-trihydroxybutyric acid and
phenylalanine were screened as biomarker candidates for child-
hood obesity by both of ULDA and CCA. Furthermore, WHR together
with TG, TC, HDL and LDL may be the most important parame-
ters which correlated with the metabolic disturbances of childhood
obesity, thus should be paid more attention to in clinical prac-
tice for monitoring metabolic disturbances of childhood obesity.
The results have demonstrated that the proposed metabolic fin-
gerprinting approach may be effective for exploring metabolic
perturbations and possible biomarkers for diseases, and may be
able to provide useful information for clinical practice.
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